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The effect of an axial pressure gradient on the stability of viscous flow between rotating cylinders
is discussed on the basis of the narrow gap approximation, the assumption of axisymmetric dis-
turbances, and the assumption that the cylinders rotate in the same direction. The onset of in-
stability then depends on both the Taylor number (7T) and the axial Reynolds number (R).
For large values of R, the dominant mechanism of instability is of the Tollmien—Schlichting type and
the present theory is based therefore on a generalization of the asymptotic methods of analysis that

) have been developed for the Orr-Sommerfeld equation. The present results, when combined
< N with previous results for small values of R, give the complete stability boundary in the (R, T')-plane.
> —~ Only limited agreement is found with existing experimental data and it is suggested therefore
8 ) that it may be necessary to consider either non-axisymmetric disturbances or nonlinear effects.
)
Eg 1. INTRODUCTION
=w In the study of the stability of viscous flows the problem of spiral flow between rotating

cylinders is of particular interest because of the interaction it exhibits between the Taylor—
Gortler mechanism of instability associated with the rotational flow and the Tollmien—
Schlichting mechanism of instability associated with the axial flow. For small values of the
Reynolds number the axial flow is known to have a stabilizing effect (Chandrasekhar
1960, 1961, 1962; DiPrima 1960; Krueger & DiPrima 1964; Datta 1965). But this stabil-
izing effect cannot persist indefinitely, since the flow must ultimately become unstable
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58 T. H. HUGHES AND W. H. REID

through the Tollmien—Schlichting mechanism of instability even in the absence of rotation.
In the present paper, therefore, we wish to consider the stability of spiral flow for large
values of the axial Reynolds number by a generalization of the asymptotic methods of
approximation that have been developed for parallel shear flows.

To simplify the problem somewhat we have made three basic approximations. First,
we make the well-known narrow gap approximation, i.e. we assume that

d=Ry— R, < (R +1Ry),

which simplifies both the velocity components of the basic flow and the linearized dis-
turbance equations. In this approximation the problem reduces to the narrow gap Taylor
problem in the absence of an axial flow and to the problem of plane Poiseuille flow in the
absence of rotation. Secondly, we consider only axisymmetric disturbances. This is an as-
sumption that is known to be valid in both limiting cases at least. In the absence of rotation
this follows from Squire’s theorem (Squire 1933) and in the absence of an axial flow it
follows from the results of Krueger, Gross & DiPrima (1966) provided that Q,/Q, > —0-78.
Thirdly, we assume that the cylinders rotate in the same directions so that one of the coeffi-
cients in the governing equations which involves the rotational component of the basic
flow can be replaced by its average value. This is also known to be a good approximation
in the absence of an axial flow (Chandrasekhar 1961, pp. 309-313) and its validity in the
presence of an axial flow has recently been confirmed by Krueger & DiPrima (1964) up
to an axial Reynolds number{ of 30. This last assumption also has the important conse-
quence of making the governing equations symmetric so that we can then treat the even
and odd modes separately.

When R = 0 we know that instability sets in at a critical Taylor number} of 1708
and leads to a steady secondary flow in the form of Taylor vortices. For small values of R,
formal perturbation theories have also been developed by Chandrasekhar (1962) and
Datta (1965), both of which lead to a result of the form

T(R) = Ty+ T, R+ .., (1-1)

where 7j = 1708 and 7, is a positive constant. The value of 7}, originally given by Chan-
drasekhar was shown to be in error by Krueger & DiPrima (1964) and was subsequently
corrected by Datta, who found that 7;, = 2-35 (based on his own theory) and 7, = 2-8 (based
on Chandrasekhar’s theory). Both theories are sufficiently complicated, however, that the
discrepancy between these values cannot easily be resolved. The Galerkin method has also
been used by DiPrima (1960) and Krueger & DiPrima (1964) to compute 7, for R in the
range 0<< R < 45.

For larger values of R, the asymptotic methods of analysis that have been developed for
parallel shear flows are generally applicable, though they must be generalized in some im-
portant respects. In this approach it is convenient to replace the pair of parameters R and 7,

1 The Reynolds number R used in the present paper is based on 44 and the maximum velocity of the axial
flow, whereas the Reynolds number & used by Chandrasekhar (1961, 1962) and some other writers is based
on d and the mean velocity. They are related by R = $R.

1 The ‘modified’ Taylor number 7 used in the present paper is based on a normalization that is appro-

priate for the case in which the cylinders rotate in the same direction. Chandrasekhar (1961) denotes it
by 7,
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STABILITY OF SPIRAL FLOW 59

which both depend on viscosity, by an equivalent pair R and f, where § = 1 T%/R is inde-
pendent of viscosity. The asymptotic approximations developed in the present paper are
therefore based on letting R — oo for fixed values of §.

2. THE GOVERNING EQUATIONS

Let the components of the basic flow in polar coordinates be given by (0, V, W), where
V(r) is the azimuthal component of the velocity due to the rotation of the cylinders and
W (r) is the axial component of the velocity due to the axial pressure gradient. If we denote
the components of the disturbance velocity by («,, uy, «,), then the linearized equations for
axisymmetric disturbances are (cf. Chandrasekhar 1961, p. 372)

aur_’_W@u —92Qu, — aa_w_{_ (V2_;1“2) u, (2-1)

S () - os
i W, e, =

and Bau;+ ’+33Z 0, (2:4)
where vl 2 (25)

372+ r 37+ d9z2°

In these equations we have let Q = V/r and @ = dp/p.

Itis convenient at this point to introduce a stream function ¢ to describe the flow in planes

which pass through the axis. Thus, if we let
%

U =—=" and u,=-+

A .
'9;4*7 (2-6)

then the equation of continuity (2-4) is automatically satisfied. On eliminating @ between
equations (2-1) and (2-3) we then have

o) tJorot e e e
where : Y(r) = d(;sz iddI;V (2-8)

Equation (2-2) can also be written in the form

J d 0 1
where D= d and D, = D+1 (2-10)
€ =4 * r

In a normal mode analysis of these equations there are two somewhat different ways of

proceeding. We can take a form for the normal modes such that the governing equations
‘ 8-2
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60 T.H. HUGHES AND W. H. REID

reduce, when W = 0, to Taylor’s equation or, when V' = 0 (and we make the narrow gap
approximation), to the Orr—Sommerfeld equation. In past work on this problem it is mainly
the first of these possibilities that has been considered. Here, however, we wish to consider
the second of these possibilities and for this purpose we let

U(r,z,t) = ¢(r) ei*Ee) and wu,y(r,z,t) = v(r) el*b), (2-11)

Equations (2:7) and (2-9) then become
v(DDy —a?)?¢ = ia(W—¢) (DDy —a?) ¢ —ia¥'(r) ¢+ 2iaQv (2-12)
and V(DDy —a?) v =ia(W—c)v—ia(D, V) ¢. (2-13)
Consider now the reduction of equations (2:12) and (2-13) to non-dimensional form with-
in the framework of the narrow gap approximation. Since we want the resulting equations to
reduce (when I = 0) to the Orr—Sommerfeld equation with the usual notation for plane

Poiseuille flow, we choose the characteristic length L, = 1d = $(R,— R,) and then introduce
the non-dimensional radial coordinate

y—= it (2:14)

so that y lies in the usual interval —1 <y < +1. In the narrow gap approximation we
have Wir) = Wi(1—y2), (2:15)

where W, denotes the maximum value of the axial flow which we also choose for our
characteristic velocity. In the same approximation we also have

V(ir) 2 R, Quou(y) and Q(r) 2 Q,0(y), (2-16)
where o) = MO+0)—(1—p)g] and u—QQ,. (2:17)

Before we write down the narrow gap forms of equations (2:12) and (2:13) it is necessary
to choose suitable non-dimensional forms for ¢ and ». A convenient choice for this pur-
pose would appear to be

b= LWype and v —3(1—p) R, Qo3 (2:18)
we also let a=oayg/Ly and c¢=c,W,. (2:19)

On making these substitutions in equations (2-12) and (2-13), taking the narrow gap limit,
and then dropping the asterisks, we have

(ieR)" 1 (D?—a?)?2¢ = (U—c¢) (D>—a?) ¢ — U" p+f? %(Ci(-yi)ﬁ) v (2-20)
and (ieR)" 1 (D2—a?)v = (U—c)v+9, (2-21)
where D:ad_’ U=1—12, R:H%éf,
’ RO\ d (2:22)
and == (140 (52 &

The presence of w(y) in equation (2:20) introduces an asymmetry into that equation
which would lead to severe difficulties in the subsequent asymptotic treatment of the
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STABILITY OF SPIRAL FLOW 61

problem. To avoid such difficulties we now make the further approximation of replacing
o(y) by its average value (w(y)) = $(1+4). In the absence of an axial flow this is known to
be a good approximation (Chandrasekhar 1961, pp. 309-313); in the presence of an axial
flow its validity has been confirmed by Krueger & DiPrima (1964) for values of R up to 30.
Thus, our governing equations become

(0R) 1 (D?—a2)? ¢ — (U—0) (D?—a?) §— Ug-fo (2-23)

and (ieR)"1 (D?2—a?) v = (U—c)v+¢ (2-24)
together with the boundary conditions

p=Dp=v=0 at y= 4+1. (2-25)

These equations are now symmetrical in y and we can therefore consider the even and odd
solutions separately. When £ = 0, equation (2-23) reduces to the Orr—Sommerfeld equation
and in that limit instability is known to be associated with an even solution. Also, when
f — 00, a simple renormalization of equations (2-23) and (2-24) leads to Taylor’s equation
and in that limit the onset of instability is also known to be associated with an even solution.
Accordingly we shall consider the even solution of equations (2:23) and (2-24) which tends
to the appropriate limits as £ — 0 and § — o0.

The coupling parameter # which appears in equation (2-23) plays a crucial role through-
out the entire analysis. As we have defined it, £ is independent of the viscosity and in our
asymptotic treatment of the problem we shall proceed on the hypothesis that £ is fixed and
R — 0. To compare our results with previous ones, however, it is convenient to note here

that B =1T*R (2-26)
where T is the modified Taylor number

T =—24Q,(1+pu) d*[v? (2-27)
and 4 = Q,(uR3—R})[(R3—R?}). In the narrow gap approximation this can be written in
he f 2
e Tz (1-p) 0+ (BB 2. (2:28)

The results obtained by Krueger & DiPrima (1964) based on equations equivalent to equa-
tions (2:23) and (2-24), i.e. based on the approximation of replacing (y) by its average
value, cover the range 0 < R < 45; in terms of § this corresponds to 0-5 < f < 0. Accord-
ingly we shall be primarily concerned with small values of # lying in the range 0 < £ < 0-5.

Before we proceed with the detailed analysis of the problem it is convenient to rewrite
the governing equations in a somewhat more compact form. For this purpose let

, = (1aR)"! (D?2—a2) — (U—c) (2-29)
and L, = (iaR)"! (D?—a?)2— (U—c¢) (D2—a?)+ U". (2-30)
The governing equations (2:23) and (2-24) can then be written in the simple form
Lp=p% and Lyy=¢ (2-31)
from which we choose to eliminate » to obtain
| L,Lg = . (2:32)

For an even solution we impose the boundary conditions
¢=¢ =Lip=0 at y=—1 and ¢ =¢"=¢" =0 at y=0. (2:33)
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62 T. H. HUGHES AND W. H. REID

We thus have a characteristic value problem and in the following sections we shall derive
a number of different asymptotic approximations to the solutions of equation (2-32),
together with the corresponding characteristic equations which then follow from the bound-
ary conditions (2-33).

3. THE INVISCID SOLUTIONS

In attempting to construct approximations to the solutions of equation (2-32) by the
heuristic asymptotic methods that have been developed for the Orr-Sommerfeld equa-
tion (see, for example, Lin 1955 or Reid 1965), a natural starting point is to consider a formal
expansion in inverse powers of izR of the form

8(y) = ¢9(y) + (1aR) 1 gD (y) +..., (3-1)
where the first approximation ¢‘”(y) satisfies the inviscid equation

(U—c) (D?—a?) g—U"g— Uﬂicqﬁ ~0. (3-2)

An equation of this type is familiar from the inviscid stability theory for parallel shear
flows in a stratified fluid (see, for example, Drazin & Howard 1966). In that context, how-
ever, —f?is replaced by a Richardson number which is then usually taken to be positive
corresponding to a stably stratified fluid. Furthermore, our interest in equation (3-2) is
somewhat different, the basic question being to what extent the solutions of equation (3-2)
provide approximations to the solutions of the full equation (2-32).

A point y = y, where U—c¢ vanishes but U’(y,) = 0 is a regular singular point of equation
(8-2) with exponents p; and p,, where p; and p, are the roots of the indicial equation

p(p—1)—(B/U;)* =0, (3-3)
ie. b by = ${1£[1+ (26U (3-4)
Note that these roots satisfy the simple relation p, +p, = 1. Thus, provided these roots do
not differ by an integer (i.e. /U, =0, $./3, /2, ...), we have two solutions of the form

$1(y,8) = (y—y )" Pi(y—y,) and ¢,(y,6) = (y—y. )2 Py(y—y,), (3-5)

where P, (y—y,) and Py(y—y,) are power series in y —y, with leading terms of unity. Since
both of these solutions have algebraic branch points at the critical point, neither of them can
provide uniformly valid asymptotic approximations to any solution of equation (2-32)
in a full complex neighbourhood of y,. By considering the ‘viscous corrections’ to ¢, and ¢,,
however, it can be shown (see §9 and the Appendix) that they do provide valid asymptotic
approximations in the usual sector —§7 < arg (y—y,) < g7 of the complex y-plane.

When the roots of the indicial equation differ by an integer, the solution (3-5) for ¢,
is not satisfactory and other forms must be found. Since #/U; never becomes as large as 1./3
in the present calculations, we need only consider the limiting case f# = 0. In that case, as is
well known, ¢, must be of the form

$2(y) = Po(y—y.) +(ULUC) 61 (y) In (y —y,), (3-6)

where, as usual, we suppose that ¢, contains no multiple of ¢,, i.e. that the coefficient of
y—y,in Py(y—y,) is zero.

In the computation of these inviscid solutions there are two essentially different methods
that can be used. One is based on the direct summation of the power series representations
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STABILITY OF SPIRAL FLOW 63

of the P(y—y,), i = 1,2. The coefficients of the powers of y—y, satisfy simple five-term
recursion formulae and the summation of these series on a digital computer is therefore not
difficult. If the summation proceeds until the absolute value of the ratio of the nth term to
the nth partial sum is less than ¢ (usually ¢ = 5x 1079), then in all cases of interest fewer
than forty terms of the series are needed. To insure that an unstable situation was not present
owing to round-off errors in the repeated use of the recursion formulae, sample summations
were repeated using double precision arithmetic and were found to agree within acceptable
limits. Since the radius of convergence of the series is 2|y,|, the summation procedure can
be used to compute the values of the P; and their derivatives at y = —1 and y = 0 for
—l<y <—%ie0<c<$.

The second method of computing the inviscid solutions is based on the numerical
integration of the differential equations satisfied by the F,(y —y,). They are then defined as
the regular solutions of the differential equations

v Wi p_ep U p z{,\,,V,L,,_WmL __,v,} _ :
Pty et g i oy opg =i 5 =0 @7
that satisfy the initial conditions
, 1\ U; )

A fourth-order single precision Runge-Kutta method was used to integrate these equa-
tions. In order to obtain the required starting values, the power series for the P, were first
evaluated at the points y(say), where y; >y, and y; < y,. The interval [ —1, 0] was then
divided into eighty equal segments and the yF were chosen to be the division points nearest
to y, such that |yf|—|y,| > 0-05. The differential equations (3-7) were then integrated
from y; to 0 and from y; to —1.

Since we shall consider only the characteristic values of the problem, we need only
obtain the values of E(y—y,) and P;(y—y,) at the boundary points y = —1 and y = 0.
In this case the summation of the power series was found to be more than five times faster
than the numerical integration of the initial value problem.

4. THE viscous soLUTIONS OF W.K.B. TyprE

In the derivation of approximations to the solutions of equation (2-32) of viscous type
there are a number of different approaches that can be used. In this section we shall consider
the solutions of W.K.B. type which provide approximations that are valid in certain domains
of the complex y-plane outside the neighbourhood of the point y,. One of the boundary
points (y = —1), however, lies in a domain in which they are not valid (at least not in the
complete sense of Olver{). To obtain approximations that are valid at this boundary

1 The concept of a ‘complete’ asymptotic expansion has been developed by Olver (1961, 1963, 1964) in
connexion with his theory of error bounds for asymptotic solutions of certain second-order differential
equations. But the application of this concept in the present paper goes considerably beyond what has
been rigorously established by him. The essential idea, however, is the importance of*restricting the use of
different asymptotic expansions of a given function to non-overlapping domains (the boundaries of which are
Stokes lines) even though the expansions may remain valid in the usual Poincaré sense in larger overlapping
domains. Throughout this paper, therefore, we shall usually specify the domains of validity in this more
restrictive sense.
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64 T. H. HUGHES AND W. H. REID

point it will be necessary to consider approximations of the local turning point type which
can then be used to extend the domain of validity of the W.K.B. solutions. By comparing
these two types of approximations it is also possible to construct, in a heuristic way, com-
posite approximations of the Tollmien type.

The W.K.B. solutions of equation (2-32) have been briefly discussed previously by Koppel
(1964) in a somewhat different context. He considered the stability of a thermally stratified
fluid in a parallel shear flow for which the governing equation is similar to equation (2-32)
but with an additional dependence on the Prandtl number, and he found that the W.K.B.
solutions have different forms depending on whether the Prandtl number is equal to unity
or not. When the stratification is unstable and the Prandtl number is one there is an exact
mathematical analogy between the two problems and in that case our results are in complete
agreement with Koppel’s so far as they overlap. Our results go somewhat beyond Koppel’s,
however, particularly in the discussion of the slowly varying parts of the solutions, in the
subsequent matching of the W.K.B. solutions to the local turning point solutions, and in the
construction of composite approximations.

To derive the solutions of W.K.B. type, let

¢ = cxp| [y, (+1)
so that g satisfies the non-linear equation
(MRY%f+1@%“Hmff+4@@*—&ﬁ¢+ 3
— (1aR)~"1H{2(U~c) (g*+ 6g%¢" +4g¢" + 3¢ > —202g%+...) +2U"(¢*+3gg'+...) +...}
+(U—e)? (g+g —at) = (U—e) U" = /7, (4:2)

where only those terms have been written down which will be needed in the subsequent
analysis. This equation is then solved in the usual way by assuming an expansion for g of

the form g(y) = (R} go(y) +21(y) + (12R) F gy(y) + ... (43)

On formally substituting this expansion into equation (4-2) and equating to zero the co-
efficients of like powers of (izR)?, we obtain a sequence of equations for the determination of
80,81, ---- The first equation in this sequence yields simply

g{gs—(U—o)j* =0, (4+4)
so that either g8=0 or gi=U-—c. (4-5)
‘The next equation, however, which normally determines g,, is found to vanish identically
for both of the above values of g§. Thus, g, is not determined to this order. Considering next

the third equation of the sequence, we find that the coefficient of g, in this equation auto-
matically vanishes, as indeed it must for consistency. By letting g§ = 0 in this equation we

have (U—6)? (g, + g —0a2) — (U—c) U" = f, (4-6)

which is a first-order non-linear equation equivalent to the inviscid equation (3-2). Thus,
corresponding to the first of the roots (4-5), we simply recover the usual inviscid solutions.
On letting g2 = U—c¢, however, we find that the coeflicient of o? vanishes and we then have

(U—6)* (g1 +gD) +3(U—c) Ugy +4(U—c) U+ 15U = 3% (4-7)
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STABILITY OF SPIRAL FLOW 65

And this is the required equation for the determination of the slowly varying parts of the
W.K.B. solutions. ‘

In our discussion of the solutions of equation (4-7) itis convenient to transform it back into
a second-order linear equation. For this purpose we let

41 = G//G, 4:8
so that G satisfies ! (4-8)

(U—c)2G"+3(U—c) UG +{(U—c) U'+13 U= 1% G = 0. (4+9)
The critical point y, is a regular singular point of this equation with exponents

¢ =—%p—% and gy =—3%p2—3%, (410)

where p, and p, are the roots of the indicial equation (3-3). Thus provided these exponents
do not differ by an integer (i.e. #/U; = %./3, $./15, ...), we have two solutions of the form

Gi(y) = (y—y) " Q(y—y,) and Gy(y) = (¥—9.)"Qx(y—Y.), (4:11)

where Q,(y—y,) and Q,(y—y,) are power series in y —y, with leading terms of unity.
When the exponents do differ by an integer, G,(y) remains valid but &,(y) must be of

the form Gi(y) = (1=3)" Qu(y—1.)+CColy) In (y—y.), (4-12)

where C must be determined so that Q,(y—y,) is a regular power series in y —y, with a lead-
ing term of unity. To make this second solution definite we can also require, for example, that
it contain no multiple of G,(y). The presence of this logarithmic term in G, (y), however, does
not affect the later matching of the W.K.B. solutions to the local turning point solutions or
the combining of them to yield composite approximations of the Tollmien type. In the
calculations that we have done the value of /U, never becomes as large as $./3 and it is
unnecessary, therefore, to consider these special cases further.
Combining these results we then have four W.K.B. solutions of the form

B5,4(y) = br~te"1G, (y) exp {F («R)!Q(y)} (4-13)
and b5,6(y) = dnte"Gy(y) exp {F (aR)* Q(y)}, (414)
where f ((U—c)}dy (4-15)

and the normalization has been chosen to facilitate comparison with limiting forms of other
approximations. We shall choose the branch of {i(U—¢) )M in equation (4-15) so that
#{Q(y)} >0 for arg(y—y,)=0 and y—y, > 0.

The solutions ¢, and ¢ are then dominant and, to satisfy the boundary conditions of the
problem, they must be rejected. The remaining solutions, ¢; and @5, are then subdominant
in the domain bounded by the adjacent anti-Stokes lines and the domain in which they are
valid (in Olver’s sense) is bounded by the Stokes lines which, near y,, are given by

arg (y—y,) = —¢n and 3.
In this strict sense, however, they are not valid in the domain which contains the boundary
point y = —1.

0 VoL. 263. A.
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66 T. H. HUGHES AND W. H. REID

5. THE VISCOUS SOLUTIONS OF THE LOCAL TURNING POINT TYPE

The local turning point approximations which will be developed in this section are a
natural generalization of the approximations commonly used in stability calculations for
parallel shear flows. When used to derive the characteristic equation they provide adequate
approximations so long as the resulting values of ¢ are not too large. As was mentioned in
the previous section, however, solutions of this type can also be used not only to obtain the
connexion formulas for the W.K.B. solutions but also, when suitably combined with the
W.K.B. solutions, to provide composite approximations of the Tollmien type.

To derive approximations of this type we first make the transformation

b(y) = (), where £=(y—y)le and = (1aRU)), (5:1)
and then expand the solution in powers of ¢ in the form
26 6) = ¥ O(E) +-exV(E) +- ... (6-2)
The first approximation y© (£) satisfies the equation
AZD% = (BIU) (6:3)
where D=d/d{ and A=D2?-{. (5-4)

Equation (5-3) clearly plays the same role in the present theory as the equation AD?y =
does in the usual theory of the Orr—Sommerfeld equation. It is necessarily of the sixth order;
for, among its solutions, we must be able to find two that will provide the required viscous
corrections to the leading terms of the singular inviscid solutions and thereby determine the
domain of validity of the inviscid solutions. From these remarks it is clear that the term
involving f/U in equation (5-3) is of crucial importance.

The fact that £ appears quadratically in equation (5-3) would suggest, at first sight, that
we have reached an impasse. Fortunately, however, this is not the case, for we will now
show that all of the solutions of equation (5-3) can be obtained from the two third-order

equations (AD+p)y =0, (55)
where p; (¢ = 1, 2) are the roots (3-4) of the indicial equation (3-3). To prove this result we
first note the identity AD = DA 1. (56)

Consider next the product (AD+p) (AD—p+-1), the factors of which obviously permute.
On using the identity (5-6) we then have

(AD+p) (AD—p+1) y = {ATD?—p(p— 1)}y, (5:7)
which is just (5-3) provided p(p—1) = (f/U,)?, i.e. provided p is a root of the indicial
equation (3-3). Thus, provided p =}, i.e. p; == p, (and this value is excluded in the present
problem since p, = 1 and p, < 0), the solutions of the sixth-order comparison equation (5-3)
can all be obtained from the two third-order equations (5-5). This factorization of equation
(5-3) is one of the essential steps in the present theory and results in an important simplifica-
tion of the problem.

1 In the closely related problem of thermal instability in the presence of a parallel shear flow considered
by Koppel (1964) this factorization is not possible if the Prandtl number is different from unity. Although
Koppel showed that integral representations of the solutions can still be obtained, they are of a more compli-
cated form with kernels that involve Whittaker functions and the subsequent analysis then becomes much
more difficult.
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STABILITY OF SPIRAL FLOW 67

An equation of the type (5-5) has appeared previously in the work of Langer (1955),
Hershenov (1957), and Rabenstein (1958) in connexion with the construction of uniform
asymptotic approximations to the solutions of the Orr-Sommerfeld equation. Their results
are not easily adapted for the present purposes and in the appendix, therefore, we have
defined certain standard solutions of equation (5-5) and have discussed some of their proper-
ties.

The solutions of equation (5-3) can be conveniently indexed by letting the solutions of
equation (5:5) corresponding to the roots p; and p, be denoted by (¥, ¥s, ¥s) and (Y2, ¥s> Xe)
respectively. From the results given in the appendix we then have

X&) = e Bs(&,p1), x2(8) = e2Q5(&, o)
¥3(8) =41, p1),  x5(8) = A1(&,£2), (5-8)
x4(§) = 45(8, 1) X6(8) = 45(8, 05)-

The solutions y, and y,have been defined in such a way that they provide the required viscous
corrections to the leading terms of the singular inviscid solutions ¢, and $,. The role played
by these solutions is discussed furtherin § 9 where a more detailed derivation of y, is also given.
The remaining solutions are essentially of the usual viscous type and have been defined so
that, as § — 0, y; and y, tend to the corresponding solutions of the Orr-Sommerfeld equa-
tion.

6. THE GENERALIZED TIETJENS FUNCTION F(z, p)

Before we derive the various approximations to the characteristic equation it will be
useful to consider the generalized Tietjens function defined by

_ AGup) O ,
F(z,p) = LA, Ed) with &, =ze and p real. (6-1)

In the case of neutral stability, z is real and positive but in some parts of the present discussion
we will allow z to be an unrestricted complex variable. The universal function F(z, p) plays
an important role in the present theory and in this section, therefore, we wish to discuss some
of its properties and describe a simple method of computing it.

For integral values of p, F(z, p) can be expressed in terms of the usual Tietjens function
F(z) and the adjoint Tietjens function F*(z) which arises in connexion with the asymptotic
theory of the adjoint Orr-Sommerfeld equation (Reid 1965). Thus, for example, we have

Fle,—1) = F'(2), (62)
i i 7 (2)
F(,0) = i 5@ F () ~ 2 (2 (6-3)
F(z,1) = F(2), (6-4)
and Flz2) =5 +Ff(z)—%<-§)l}, (65)

where Z# (z) = {1—F(z)}"! is the modified Tietjens function.
From equation (A 6) we have the alternate form

P == (66
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68 T.H. HUGHES AND W. H. REID

and from the recursion formula (A7) we can then obtain the relation
i

Zub—“l) F(Z,p—Q)

between three contiguous generalized Tietjens functions. Since F(z, +1) have already been
tabulated it is convenient to note the further relation

pF(Zub) = 1MZ3F( (6'7>

PEp) = V(= 1) Flap=3) 50 =0, (68)

Onsetting p = 11in equation (6-7) and solving for I(z, 0) we obtain equation (6-3) ; similarly,

on setting p = 2 in equation (6-8) we immediately obtain eqution (6-5). These results also

show that we need only consider F'(z, p) for values of p in the range —1 < p < 2 (say).
Since F(z,p) has a simple pole at z = 0, it is convenient for some purposes to let

H(z,p) = 2F(z,p). (6:9)

It then follows from equation (A1) that H(z, p) satisfies the second-order non-linear equa-
tion

HH' —1+3H' —2H"™ + ¢-(zH?— pIH3) = 0 (6-10)
and the initial conditions
i L (G+35P) , {LG+3p))
H(0,p) = —ebri 73 03P) g o p) =1 U313 . (6
0 == irargy) M OOty O

The leading term in the asymptotic expansion of F(z, p) can, of course, be obtained from
equation (A9) and this shows that F'(z,p) has a purely neutral expansion in the sector
&7 < argz < 3m. Additional terms in this expansion can be obtained most easily by using
equation (6-10) and in this way we obtain

F(z,p) = etz 4 1(342p) edmiz =3+ 35 (59 4 72p+20p2) elriz =54 0(|z]76).  (6:12)

The complete asymptotic expansion of F(z,p) in the sector —3n < argz < 47 could, if
needed, be obtained from the results given in the appendix but it would be of a much more
complicated form. For the present purposes, however, it is sufficient to note that the expan-
sion (6-12) remains valid, in the sense of Poincaré, in the larger sector —37 < argz < L.

To compute H(z,p), and hence F(z,p), for real values of z it is convenient to rewrite
equation (6-10) as a system of real first-order, equations. For this purpose we let

H=X+1Y and H = U+iV (6-13)

and obtain

X' =U,

Y =17,

, X1 —-3U+42(U?—=V2))—=YV(3—4U .

g — X ( X2+Y)2} ( )—zY+2pXY, | (6-14)

_ _ 2__ 2\ _

and s Y{1 3U—l—2(§2+1;2)} XV(3 4U)+zX»—p(X2—Y2).
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STABILITY OF SPIRAL FLOW 69
The required initial values then follow from (6-11) in the form
X(0) = V3 F( _3;[1)_ Y(0) = ! F %;_%;@M
TG+
U(0) = 1— -, W G , V(0)=o.
O =1 rap v O
Z=2
04 2:5
25
=-0-2
| 3 i p
3
0-2f \ 15
~~ p=
e
0 ! | ! | ; ! ! | L5 ! .
0-2 0-4 06 0-8 1-0 12
s Fr(z;P) \
.-O.ZL

Ficure 1. The generalized Tietjens function F(z, p) for p = 0 and —0-2.

04

z=4

E.(zp) N

[
(S

-01

Ficure 2. The generalized Tietjens function F(z, p) for p = 1 and 1-2.
There is also a loop (not shown) for p = 1.

For fixed values of p this system of first-order equations can be integrated without
difficulty by using a fourth-order single precision Runge—Kutta method with a step size of
Az = 0-0125. For comparison purposes F(z,p) was also computed for p =—1(1)2 and
z = 0(0-1) 10 from existing tables of the modified Hankel functions of order one-third and
their integrals (Harvard University Computation Laboratory 1945; Singh, Lumley &
Betchov 1963), and complete agreement was obtained. Some results of these calculations
are shown in figures 1 and 2 for typical values of p.
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70 T. H. HUGHES AND W. H. REID

7. THE CHARACTERISTIC EQUATION USING VISCOUS SOLUTIONS OF THE
LOCAL TURNING POINT TYPE

Having obtained approximations to six solutions of the governing equation, we can now
use the properties of these solutions to derive simplified forms of the characteristic equation.
The simplest approximation to the characteristic equation is obtained by ignoring the
viscous corrections to ¢, and ¢, altogether and by using the local turning point approxima-
tions to the viscous solutions. The effect of ignoring the viscous corrections will be examined
later in§9. In using the local turning point approximations to the viscous solutions, however,
we are effectively assuming that the values of ¢ along the curves of neutral stability remain
small, i.e. that the critical point remains close to the boundary y = —1. Since the value of ¢
associated with the minimum critical Reynolds number does, in fact, increase from 0-27
to 0-78 as f increases from 0 to 00, this is an approximation that may become questionable
for sufficiently large values of f. Fortunately, however, this limitation can easily be over-
come by using approximations to the viscous solutions of the composite type first suggested
by Tollmien (1947). The derivation of these composite solutions will be given in §10 where
we will also examine their effect on the characteristic equation.

In the central part of the channel we expect that viscous effects will be negligible and
consequently we must reject y, and y,. Furthermore, since y, and y; are exponentially small
at y = 0, they automatically satisfy the boundary conditions there with an exponentially
small error. Thus, if we let D = A, + 4, (7-1)

be the solution of the inviscid equation that satisfies the boundary condition ®’(0) = 0, then,
since U(y) is an even function of y, it automatically satisfies the other boundary conditions
®"(0) = ¢'(0) = 0.

Consider then an approximation to the solution of equation (2-32) of the form

¢ = O+ Cyp5+Cs s (7-2)

Differentiation of this result immediately gives
¢' = @'+ Cye™! p3+ Gy (7-3)
but the evaluation of L,¢ from (7-2) and the satisfaction of the third boundary condition
aty = —1 requires more careful consideration. If the operator L, is formally applied to @,
we obtain L,®=e3(D2—a2)20—p2(U—c)"1 D, (7-4)
where we have used the fact that @ satisfies equation (3-2). Thus, away from the critical

with an error O(|¢|3). Near the critical point, however, the ratio of the viscous to the inviscid
termsin (7-4) is O(|£|?) and the approximation (7-5) then remains valid provided |£| % < 1.
Similarly, applying the operator L, to a viscous solution y and using the fact that y satisfies
equation (5-5) we have Ly — e U(1—p) g’ (7-6)
with an error O(1) provided |y—y,| < 1. On combining these results we obtain

2
Ly§ > — b ® 1y UL —py) 1t Coe UL~ o) (77)
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STABILITY OF SPIRAL FLOW 71
The characteristic equation then follows from equations (7-2), (7-3), and (7-7) in the
form
O(—1) X3(1) X5(&1)
(-1 e~ 'ys(&1) e x5(61) =0, (7-8)
(Be) @(—1) ¢ MUL(1=p1) 5(81) ¢ UL(1—p5) 5 (&)
where §, denotes the value of { aty = —1,1.e. §; = — (1+y,)/e. On expansion and simplifica-
tion we obtain
1 '(—

A(a,e,2;p) = T_Ty” (p1—12) + (I) {pl (z,11) ﬁzF(z,ﬁz)}

ool (2 )~z )} = 0, (1)

where z = £, e*7ias usualand F (z, p) is the generalized Tietjens function discussed in § 6. Note
that if we let # — 0 so that p, — 1 and p, — 0 and interpret ¢, as the logarithmic solution of
Rayleigh’s equation then equation (7-9) reduces to the usual form

1 %1
1+y, @(—1)

Even in this simple approximation the characteristic equation (7:9), unlike its limiting form
(710), is not ‘separable’ and, as a result, direct methods of solution, such as the usual
graphical method, cannot be used.

For fixed values of #, the zeros of A, define a curve of neutral stability in the (a, R)-plane.
Along such a neutral curve zincreases from about 2 to 00 and, as usual, we use z as the second
fixed parameter. For given values of # and z (Z say) the zeros of A, are found by Newton’s
method and this requires many evaluations of A, at different values of « and ¢. Thus, it is
necessary to consider carefully the manner in which we evaluate A,. Since the p;, 7 = 1,2,
depend on ¢, F(z,p;) must be computed for each evaluation of A, that requires a new value
of ¢. This procedure is very time consuming but can be avoided if we let 7 = 2§/U, and con-
sider the values of 7 rather than £ to be fixed. The p; are then functions only of  and hence
we can calculate an entire neutral curve with only one computation of F(z, ).

To find the zeros of A; which is a complex-valued non-linear function of the two real
parameters « and ¢, we used the two-dimensional form of Newton’s method

X, = X, —J 71 (£(x)) £(x), (7-11)

where X = (a,¢), f = (f,8) = (Z(A,),#(4,)), and J~! is the inverse of the Jacobian (see,
Mack 1965; Isaacson & Keller 1966). Equation (7-11) can be put into a more convenient
form by writing it as a system of two linear equations for X, ; = (@,,,,¢,,,), i.¢.

( Xy —& )foc( %ps n) (n+l )f( )+f( %ps n) - }

= —F(2). (7-10)

(7-12)
and (O‘n+l )goc( s n)+(cn+l— n) gc( %ps n) +g(an3 n) = 0.
The partial derivatives f,, f,, £,, and g, are obtained approximately by computing A (,, ¢,),
A (a,+Aayc,) and A (a,,¢,+ Ac), and then forming the appropriate ratios. This method is
quadratically convergent if the initial guess, X, is ‘sufficiently close’ to the root. For a given
value of 7 and the first fixed value of z (Z, say), the initial guess, X,, can be found by plotting
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Ficure 3. The curves of neutral stability for # = 0, 0-4, 0-6, and 0-8. The kinks along the upper
branches of these curves are due to the loops in F(z, p) shown in figure 2. ————, Asymptotes

to the upper and lower branches.

| 1 | ! ! )
0 0-4 08 « 1-2 1-6

Ficure 4. The relation between the wave-number « and the wave-speed ¢ along the neutral curves.
The points O correspond to the minimum critical Reynolds number. What appear to be
corners in these curves are actually small loops (cf. Hughes & Reid 19654, 4).
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STABILITY OF SPIRAL FLOW 73

the absolute value of A; on a coarse network of points in the (a,¢)-plane. One or two sub-
sequent plots on a finer network can be used to improve x,. Once the first root is found, the
initial guess for Z, = Z, 4+ Az can simply be taken as the root already found for z,. With

this procedure only five or six iterations using equations (7:12) were needed to obtain the
roots to five significant figures.

TABLE 1. RESULTS BASED ON THE CHARACTERISTIC EQUATION (7-9)

) b J2) B z a ¢ R NT
0-00 1-0000 0-0000 0-0000 3:043 1-022 0-2672 53971 0-0
0-01 1-0000 0-0000 0-0086 3-042 1-022 0-2673 5390-0 184-
0-05 1-0006 —0-0006 0-0427 3-038 1-024. 0-2695 5221-7 892-5
0-10 1-0025 —0-0025 0-0851 3-025 1-030 0-2765 4739-6 1612-5
0-15 1-0056 —0-0056 0-1266 3-005 1-:040 0-2879 4061-1 2056-2
0-20 1-:0099 —0-0099 0-1669 2-974 1:052 0-3033 33147 2213-6
0-25 1-0154 —0-0154 0-2058 2-937 1-068 0-3225 26037 2143-1
0-30 1-0220 —0-0220 0-2428 2-892 1-085 0-3450 1988-1 19309
0-35 1-0297 —0-0297 0-2778 2-840 1-102 0-3702 1489-0 1654-4
0-40 1-0385 —0-0385 0-3104 2784 1-121 0-:3979 1102-1 1368-5
0-45 1-0483 —0-0483 0-3405 2722 1-140 0-4276 810-9 1104-3
0-50 1-0590 —0-0590 0-3678 2659 1-160 0-4590 5956 876-2
0-55 1-0706 —0:0706 0-3921 2-593 1-180 0-4917 4383 687-4
0-60 1-0831 —0:0831 0-4132 2-530 1-203 0-5257 323-8 5355
065 1-0963 —0-0963 0-4308 2-469 1-230 0-5607 240-8 4150
0-70 1-1103 —0-1103 0-4445 2415 1-266 0-5967 180-4 320-7
0-75 1-1250 —0-1250 0-4540 2-369 1-312 0-6336 136-2 247-3
0-80 1-1403 —0-1403 0-4583 2-337 1-380 0-6719 103-5 189-9
0-85 1-1562 —0-1562 0-4558 2-318 1-482 07124 78:58 143-3
0-895 1-1710 —0-1710 0-4373 2:342 1-715 0-7613 57-28 100-2

The results of our calculations based on the characteristic equation (7-9) are given in
table 1. The results end at 7 = 0-895 because of a severe distortion of the neutral curves
which appears to be physically unrealistic. A selection of curves of neutral stability are
shown in figure 3 and the corresponding behaviour of the wave-speed ¢ is shown in figure 4.
These results are based on fixed values of 7, and we must assure ourselves that the minimum
values of R are close to the values that would have been found had £ been kept fixed. As
shown in figure 4, ¢ is slowly varying in the neighbourhood of the minimum values and,
therefore, 7 is nearly proportional to # and we should get approximately the same minima.
Test calculations have confirmed that to within graphical accuracy the minima are the
same. They also showed, however, that the calculations with 7 fixed are about fifty times
faster than the calculations with £ fixed.

8. THE ASYMPTOTES TO THE CURVES OF NEUTRAL STABILITY

To complete the discussion of the neutral curves, based on the approximation (7-9) to the
characteristic equation, it is necessary to obtain their asymptotic behaviour as R — oo.
Since the limiting behaviour of the upper and lower branches are quite different, the two
limits must be treated separately. Along the upper branch we approach a purely inviscid
limit but one that is necessarily singular. Along the lower branch, however, the critical
point remains at a finite distance from the boundary y = —1 as R — oo and viscous effects
do not therefore become negligible.

10 VYou. 263. A.
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74 T.H. HUGHES AND W. H. REID

The asymptotic behaviour of the upper branch of the neutral curve

Consider first the limiting inviscid solution, which we will denote by ®,(y). One of the
results obtained by Miles (1961) in his study of the inviscid theory for stratified parallel
flows is applicable to the present problem and it implies that ®; must be a multiple of either
@, or ¢,. Thus, within the framework of a purely inviscid theory, there is an indeterminacy
in the limiting inviscid solution. From the present viscous theory, however, we find that as
R — oo along the upper branch 4 - 0, & —a,, ¢ - ¢,, and z - co. The limiting inviscid
solution must therefore be a multiple of ¢,. Thus, we simply let @ (y) = ¢,(y; a,,¢,), where
the ‘eigenvalues’ o, and ¢, must be determined so that ¢, satisfies the inviscid equation

(U—=¢,)? (Pa—034s) = (U—¢,) U'dy—19°Us?¢, = 0 (81)
and the boundary conditions
$5(0) =0 and ¢@,(—1) =0. (8-2)

Some typical values of the parameters associated with this limiting inviscid solution are
given in table 2.

TABLE 2. THE VALUES OF THE PARAMETERS ASSOCIATED WITH
THE LIMITING INVISCID SOLUTION

7 s Cs Ys (I)S(O) (D.’T( - 1) S
0-0 0-0000 0-0000 —1-0000 — —_
0-2 0-2719 0-0385 —0-9806 26-00 54-08
0-4 0-5317 0-1380 —0-9284 7-278 16-08
0-6 0-7666 0-2657 —0-8569 3-854 8-936
0-8 0-9653 0-3960 —0-7772 2-703 6-379

To determine the way in which this limit is approached it is necessary to obtain the be-
haviour of ®(0)/®’(0) to at least first order in ¢« —a, and ¢—¢, as « — «, and ¢ = ¢,. This can
formally be done without difficulty by means of the expansion procedure that was previously
developed for ordinary boundary layers with an inflexion point (Hughes & Reid 1965 5).
For this purpose it is convenient to consider a second solution, W¥,(y) say, of the limiting
inviscid equation (8-1). A natural choice for this second solution is simply W, (y) = ¢, (y; «,, c,)
and the Wronskian of these solutions is then W (D, V) = p, —p,.

Consider now an expansion of @ (y) in powers of both & —a; and ¢—¢, of the form

D(y) = Oy(y) +D1(y) (e—a) +Do(y) (c—¢;) +..., (8:3)

where @ (y) satisfies equation (3-2). For fixed values of 7, ®, and ®, must satisfy the inhomo-
geneous equations

M®, = 20, (U—c,)2 D,

272 8:4

and : M(D2:{U"~772+%ﬂ} o, (8:4)
U—c,

where M= (U—c,)?2(D?—a2)— (U—c,) U — U2 (8-5)

The solutions of these equations that satisfy the boundary conditions ®;(0) = ®;(0) = 0 are

Zow oy, [ 0,4 (8:6)

D (y) =4,0,—
l(y) ” 1¥s pl_p2
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STABILITY OF SPIRAL FLOW 75
1 2U'2 (DZ
d _ " 2 77
and  @yfy) = 4,0, ‘FHU +2U_€}(U 5y

177U'2}<(D‘F dy. (8+7)

Pl*ﬁzq)f-l:U” 2+2U“‘€ U—c,)?

In these equations the paths of integration must, where necessary, be taken to lie below the
critical point y,. At y = — 1, independently of the choice of 4, and 4,, we have

O(=1) = gy [ oy (88)
and Dy(—1) = (D,(l__l)f {U” 7;4—; Z;U;Z}(U?z L 5 dy, | (8-9)

where we have used the Wronskian relation to express ¥,(—1) in terms of ®;(—1). In
keeping with our usual normalization convention, the constants 4, and 4, could be fixed
by the requirement that the coeflicient of (y—y,)#? in the expansions of @, and ®, vanish,
i.e. that @, and @, be less singular than @,. From this requirement it immediately follows
that 4, = 0 and that @, is then of order (y—y,)#' near y,; the determination of 4, is more
complicated, however, and will be omitted since it is not needed for the présent' purposes.
These results can be used not only to obtain the asymptotic behaviour of the upper
branch of the neutral curve as R — oo but also to demonstrate the existence, near the
neutral mode @, of a neighbouring unstable solution. For this latter purpose we consider
the purely inviscid form of the characteristic equation (7-9) and immediately find that

=D)DH(—1)
[@,(— 1)

This result is substantially equivalent to Howard’s formula (1963, equation (14)) for ¢’(«,),
which he obtained in the context of the inviscid theory for stratified shear flows. One im-
portant difference, of course, is that in the present analysis we have kept 7 rather than f
fixed. On taking the imaginary part of equation (8-10) we obtain

F{D,(—1) D (—1)}
[@,(—D)[F -

C—C; —> — w) as ¢—>¢, and a-—>a. (8-10)

¢; > K,(¢—a,), where K;=-— (8-11)

The calculations which will be described below show that K, is negative and hence that
¢;Z0 when S a,. '

To obtain the asymptotic behaviour of the upper branch of the neutral curve we must
consider the asymptotic form of the characteristic equation (7-9) as R — oo with ¢; = 0.
For this purpose it is convenient to let

a,+ib, = O, (=1)[D(—1) and a,+iby = Dyp(—1)/D(—1). (8:12)

To first order in a—a; and ¢—¢, we then have

(8-13)

(4 +iby) (@ —a,) + (ay+1b,) (c—c¢

1+
where z= (¢, RU)* (1+y,) {1+ O(a—a, c——cs)}.r (8-14)

10-2
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76 T.H. HUGHES AND W. H. REID
By eliminating z between the real and imaginary parts of equation (8-12), we obtain
¢c—c, —~ Ky(a—a,), where K,= _@_:é;) (8:15)

and the imaginary part itself then gives

2

R Kyfa—a) % where Ky= g Jlr%) o (aZZf—Zbe) . (816)

It is perhaps worth noting that the dependence on o —a, given by equations (8-11), (8:15),
and (8-16) is the same as for ordinary parallel flows with an inflexion point.

The principal difficulty in actually determining the coeflicients K, K,, and Kj lies in
the calculation of ®, (—1) and ®,(—1) from equations (8:8) and (8-9). For the present
purposes it is sufficient to assume that p, > — %. The singularity in the integrand of equation
(8-8) is then integrable and ®,(—1) can be evaluated numerically without difficulty. In
the case of ®,(—1), however, the singular behaviour of the integrand of equation (8-9) is
more serious. T'o deal with this situation we let

0 0
I :f (U—c)-2®2dy and Izzf (U—c,)-3 D2 dy. (8:17)
-1 -1
Since U” = —2 in the present problem these are the only integrals that need be considered.
We now wish to transform these integrals so that only real integrals with integrable singu-
larities need be computed. This can easily be done by first letting

Ao = {578 20 and s =522 5w) (s18)

with f(y,) =f5(y,) = 1 so that they are both analytic at y,. Repeated integration by parts
then gives

— ysq)SZ(O)___ 1 ~2pomi vs 0 — 2 £ .
. h==p e 2[72(1—2;)2)[];2{6 o f_ﬁfys}ly w2 fily)dy - (8:19)
an .
sy p0) L (e Uy U2 00
? 2p,(1—¢,)®  4py(1—p,) (1—2p,) T—¢; 2 (L—¢)%] (1—¢,)®

2149 B2(—1) 1 [, . [u [0
- Ys:

P " 28" (y) dy}- (8-20)
In deriving these results we have assumed only that U(0) = 1, U'(0) = 0, and U(—1) = 0.
The numerical evaluation of these improper integrals is somewhat lengthy and we have
therefore made detailed calculations for only three values of #. These results are given in
table 3.
TABLE 3. THE VALUES OF THE PARAMETERS ASSOCIATED WITH THE
ASYMPTOTE TO THE UPPER BRANCH OF THE NEUTRAL CURVE

U) @, (-1) I, I, DQy(—1)
0-4 1-90 —0-2311 78-3 +31-01 50-5 41131 —9-85—-1-051
0:6 1-41 —0-3691 24-2 + 20-21 +6-09 +39-0i —6:61 —1-38i
0-8 1-26 —0-538i1 10-6 +16-9i —0-175+23-91 —574 —1-831

Ui K, K, K,
0-4 —0:0436 0-231 10080
0-6 —0-0961 0-279 560

0-8 —0-148 0-285 96-0
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STABILITY OF SPIRAL FLOW 7

The asymptotic behaviour of the lower branch of the neutral curve
As R — oo along the lower branch we find that 4 - 4,, « = 0, ¢ — ¢,, and z > z,. In this
limit ® - ®,, where ®,(y) is the solution of the equation
(U—e,)2 @)= (U—c,) U'Dp— 32U D, = 0 (8-21)
that satisfies the boundary condition ®,(0) = 0. In this equation U; = U’(y,), where y,

is the value of y for which U—¢, = 0. The value of ¢, is not known a priori but must be deter-
mined simultaneously with z, from the limiting form of the characteristic equation

A (0,¢p,2,38) = 0. (8-22)
In this limit we also have z, — (aRU))% (1+y,) (8-23)
from which it follows that
1 z, \3
R— K,a-!, wher K:—;(”). 8-24
- K,a where =u\izy, ( )

The values of the parameters associated with this limit are given in table 4.

TABLE 4. THE VALUES OF THE PARAMETERS ASSOCIATED WITH THE
ASYMPTOTE TO THE LOWER BRANCH OF THE NEUTRAL CURVE

7 cp Yr zp 4, K,
0-0 0-0000 —1-0000 2:297 —_ —
0-2 0-0467 —0-9764 2-244 51-64 438500
04 0-1829 —0-9039 2:122 14-25 5970
0-6 0:3740 —0-7912 1-997 7-632 5529
0-8 0-5663 —0:6586 1-905 5711 131-8

The approach to this limit can also be obtained by considering an expansion of the form

D(y) = Op(y) +Ds(y) 2+ Dy(y) (c—cr) +-.., (8-25)
where @,(—1) = 0. The subsequent analysis, however, is even more complicated than that
given for the upper branch and it will therefore be omitted. The main conclusion from such
an analysis is simply that ¢—c; — constant X a? as « — 0 (cf. figure 4).

9. THE EFFECT OF THE VISCOUS CORRECTION TO (), ON THE
GHARAGTERISTIG EQUATION

Because of the singular character of the inviscid solutions, particularly ¢,, it would appear
desirable to consider the effect of the viscous corrections on the characteristic equation.
In the case of ¢,, the singularity in ¢; and the inviscid form of L,¢, is as weak as (y—y,)#1-1
and it would appear therefore that we need not consider the corrected form of ¢,. In the
case of ¢, however, which is singular like (y —y,)#2 with p, negative we know, by analogy with
the theory of the adjoint Orr—Sommerfeld equation (Hughes & Reid 19654), that if p,
were to become as negative as —1 then it would be essential to use the corrected form of ¢,.

To obtain the first viscous correction to ¢, we must consider a viscous solution, y, say,
that is asymptotic (for [§] > 1) to ¢, (for |y—y,| < 1) in sectors of the complex y-plane
that include the boundary points. From the results given in the appendix it immediately
follows that the required viscous solution is given by

1) = e Qy(E. 1) (91)
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78 T. H. HUGHES AND W. H. REID

and that it is unique since @, is the only solution of equation (A1) for p < 0 that is neutral
in the sector S;u S,. If we now let ¥, denote a corrected form of ¢,, then with one viscous

correction we have Vo(y) = 62(9) — (1 —9.) 2 +2:(8), (9-2)
where the remaining singularity in ¢, is of the order of (y—y,)#>"L
Accordingly we now let Y = Ag, +,, (9-3)

where 4 has the same meaning as in equation (7-1). In this approximation we are effectively
assuming that ¢, — ¢, as y — 0 and hence that the coefficient 4 is determined by the con-
dition ®’(0) = 0. The question then arises as to the meaning of L, operating on the term
(y—y,)?> which appears in the definition of ¢,. If we again invoke the principle that the
boundary conditions need be satisfied only to the same order of approximation as the solu-
tions themselves then we need retain only those parts of L, that are directly responsible for
the leading term in ¢, and in this way we obtain

Ly(y—y,)* - —U(y—y,) D*(y—y,)?* = U p,(1—py) (y—y,) > (9-4)
Thus we have

2
LY > — P 0 Ulpy(1=ps) (g9 )P e UL =) QiEnp), (99)

where the remaining singularity is then as weak as (y—y,)#? and this would appear to be
entirely acceptable provided —1 < p, < 0.
In this approximation the characteristic equation becomes

(1+y,)~P2elmD(—1) —14+E£7#2Q3 (&1, £2) xs(&1) X5 (1)
(L+y) e 2mid" (—1) — o+ &1 Q5(81, p2) Eixs(&1) E1x5(&1) 0.
2p1p5(1+y, )P le 2y (1—y,) " O(—1)
—p102+0180 Q565 02) D261 x5(81)  prEus(Ey) (06)
-6

On expansion and simplification this becomes
Ay(a,c,2;5 f)
= {(1+y,) 22el2m®(—1) — L+E722 Q5 (€1, £2)} (01 —12)
—{(1+y) e @ (—1) —py+E1Q5(E1, £1) Hb1 F (2, 1) — b2 F (2, 5)}
{20102 (1 +y )P le 2 (1 —y) L O(— 1) —p1 oo+, 81 Q5 (€1, 2) HIE (2, 1)
—F(z,p,)} = 0. (9-7)
When Q,(,,p,) can be represented approximately by the leading term in its asymptotic

expansion then this result reduces, apart from a constant factor, to equation (7-9).
The viscous correction Q4(§, p) was computed by numerical integration of the differential

equation §—EQy+pQs =0 (9-8)
with the initial conditions (cf. equation (A 25))
3-41'(1 )

9 TAN\YTBY) a=tpai
QS(Oub) = PF(—p) e,
, - (41 o
Q3(0,p) =+ ‘(“[7:1—)‘%?:3;’0)*) et-pmi, (9-9)
and 10,9) = =202 LE=30) o,

T (p—2)T(—p)
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STABILITY OF SPIRAL FLOW 79

A comparison of the results obtained in this way with existing tables (Reid 1965) of @5(¢, —1)
confirmed the adequacy of this approach for values of z in the neighbourhood of the mini-
mum critical Reynolds number. Forlarger values of z(of the order of 5) this method becomes
inaccurate and greater care would be needed if one wished to compute the whole neutral
curve in this approximation. An example of the behaviour of @, is shown in figure 5.

12r

st
l I l I ! | ! L ]
4 2 0 -2 -4
o e T
—02L
Frcure 5. The viscous correction Q;(§,, p,) for p, = —0-2.

The results of our calculations based on the characteristic equation (9-7) are given in
table 5. A comparison of these results with those given in table 1 show that the effect of
including the viscous correction to ¢, in the characteristic equation is not large. This con-
clusion is perhaps not altogether surprising in view of the very mild singularity in ¢, over
the range of 7 that we have considered.

For values of 5 greater than about 0-5, however, the assumption that ¢, - ¢, as y - 0
begins to fail and it then becomes necessary to reconsider the boundary conditions at the
centre of the channel. For this purpose we assume, as is usually done, that away from the
critical point @ does not change its order of magnitude on differentiation. The same is
then true of W since @, unlike the other viscous solutions, is a slowly varying function. On
this hypothesis we find that 4 must be determined by the condition ¥ (0) = 0, i.e.

A$1(0) +2(0) — (=g ) >~ {po— & 2Q5(E0s £2)} = O, (9-10)
where & = —y e = zyedmi  (say). (9-11)

With 4 determined in this way the boundary conditions ¢”(0) = ¢"(0) = 0 are not satisfied
exactly by W'. But the error thereby introduced into the characteristic equation is of order
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|e|? compared with the terms retained in equation (9-7) and can therefore be neglected. In
this approximation 4 also depends on z, but since z, is related to ¢ and z through the equation

TABLE 5. RESULTS BASED ON THE GHARACTERISTIC EQUATION (9:7)

4 i s z a ¢ R JT
< ”‘ 0-00 0-0000 3-043 1-022 0-2672 53971 0-0
. N 0-01 0-0086 3:042 1-022 0-2673 5389-8 184-5
< 0-05 0-0427 3-:038 1-024 0-2696 5216-6 891-7
— S 0-10 0-0850 3-024 1-030 0-2767 47211 1606-1
O —~ 0-15 0-1265 3-000 1-040 0-2883 4025-4 20377
=z M 0-20 0-1668 2-967 1-053 0-3041 3262-6 2177-4

i 0-25 0-2056 2-925 1-068 0-3238 25389 2087-9
) 0-30 0-2424 2-874 1-085 0-3470 1915-6 1857-7
i) 0-35 0-2771 2-815 1-103 0-3732 1413-3 1566-5
= w 0-40 0-3092 2750 1-122 0-4023 1026-9 1270-4
— 0-45 0-3386 2-681 1-142 0-4338 739-0 1000-8
<z 0-50 0-3647 2-611 1-165 0-4678 529-2 772-2
Yo 0-55 0-3874 2:543 1-192 0-5040 3787 586-6
E; 0-60 0-4059 2-482 1-229 0-5423 2717 441-2
O&t) 5 0-65 0-4200 2-429 1-276 0-5825 196-1 329-4
8;,; 0-70 0-4289 2-385 1-340 0-6245 142-4 244-3
T4 0-75 0-4315 2-356 1-434 0-6690 103-5 178:6
E§ 0-80 0-4226 2-350 1-609 0-7209 72-72 123-0
O = 0-815 0-4073 2:370 1782 0-7503 59-70 97-25

With the centre correction (9:10)
0-55 0-3874 2-543 1-192 0-5040 3787 586-6
0-60 0-4059 2-480 1-226 0-5423 271-8 441-2
0-65 0-4192 2-423 1-274 0-5841 193-3 324-1
0-70 0-4255 2-376 1-357 0-6305 134-8 229-5
0-75 0-4252 2-355 1-497 0-6787 94-75 161-1
0-80 0-4144 - 2369 1737 0-7316 65-96 109-34
0-808 0-4060 2-385 1-850 0-7475 59-21 96:15

there is no further difficulty in the subsequent solution of the characteristic equation.

A

Y B \

From the results given in table 5 it can be seen that the effect of this ‘centre correction’ is
:é completely negligible for 0 < 7 < 0-55 and even for larger values of 7 the effect remains
> small.

olm

=

O 10. THE CHARACTERISTIC EQUATION FOR COMPOSITE SOLUTIONS

O OF THE TOLLMIEN TYPE

= uw

Because of the relatively large values of ¢ that occur in this problem it is desirable to con-
sider briefly the composite solutions of the Tollmien type which include both the W.K.B.
and local turning point approximations as limiting cases. For this purpose we firstintroduce

the Langer variable .
= (iaR)%B- ! <U—c)%dy]3 (10-1)
Ye

PHILOSOPHICAL
TRANSACTIONS
OF

and note that 20t = (aR)*Q(y), (10-2)
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STABILITY OF SPIRAL FLOW 81

where Q(y) is given by equation (4:15). A comparison of the W.K.B. solutions (4:13) and
(4-14) with the local turning point solutions (5-8) then suggests that we can construct
composite solutions of the form

$3(y) = Gi(y) (€)= 4, (L, p1),
$4(y) = Gy (y) (€)1 Ay(C, 1), (10-3)
#5(y) = Ga(y) (e€)~ 41(C, p2)>

and $6(y) = Ga(y) (e€)~2 A,(C, p2),

where G, and G, are given by equations (4-11). For small values of |y —y,|, { - £ and these
composite solutions then reduce to the local turning point solutions (5-8). For large values of
|¢| they reduce to the W.K.B. solutions (4:13) and (4-14) but only in certain sectors of the
complex {-plane. For ¢, and ¢; this reduction is possible (in the strict sense) only in the
sector |arg {| < &n. This sector does not include the boundary point y = —1 and this fact
explains the poor results that are obtained when the W.K.B. approximations are used for
stability calculation (see, for example, Reid 1965). For ¢, and ¢; this reduction is possible
(again in the strict sense) in the sector —%m < arg{ < 0 and this sector does not contain the
other boundary point y = 0.

When approximations of this type are differentiated, only the terms that arise from
differentiation of the rapidly varying part of the solutions can consistently be retained. Thus,

for example, we have da(y) = Gy(y) ()~ L A1(L 1) (10-4)
where {{'? = iaR(U—c). Similarly, in applying the operator L, to a composite solution we
can approximate L, by its ‘truncated’ form, i.e.

L, (1aR)"'D*— (U—¢) D?, (10-5)
and thus obtain  Lydy(y) > Gy(y) (60) 0 (10R) " {4(1—p;) 45 (6. 0)- (106)

On using the viscous solutions of composite type together with the uncorrected inviscid
solutions we obtain the characteristic equation in the form

(1) - A, (61 1) 4,815 £)
(-1) 1 41(G 1) 1 41(81 ) =0 (10-7)
(B%e) D(—1)  (1aR)1 {41 —py) Ai(Cpr)  (10R) 7 GH(1—p,) 41(Gi82)
where {; and ¢} denote the values of { and {’ aty = —1. To conform to our previous notation
as closely as possible we now let
{ = 2e%i where 2= (aR) [3f |U— cl%dg/] (10-8)
When U(y) = 1—y2? we have
2= ERMIUEF and = -5, (10-9)
where ule) = Je— (1 —c)In (1+/e) +3(1—¢)In (1 —c). (10-10)
On expansion and simplification the characteristic equation then becomes

Male 6,25 §) = 5 205 (=) + G =15 (0 FE.p)—1a (2, )

3 u(c)
+3p10567 1 —0) p(0) {F (2,£1) —F (2, p2)} = 0. (10-11)
For small values of ¢ this reduces, as it should, to equation (7-9).

11 Vor. 263. A.
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The effect of using the Langer variable in the viscous solutions can be partially illustrated
by comparing the dependence of z and £ on ¢ asshown in figure 6. For this purpose we have let

z=(@R)tf(c) and 2= (aR)}f(c), (10-12)
where fle) = 25(1—¢)*{1—(1—¢)¥} and Jo) = {Bulo) . (10-13)
The results of our calculations based on the characteristic equation (10-11) are given in
table 6.
4 0-81
<« /;:]/ !
ad A
A h | f(c)
NP
oln F©
= O
LT O
=w -
22
=0
T = | 1 1 1
=
o9« 0 0-4 0-8 1-0
&z C
§'§ F1GURE 6. The behaviour of f(c) and f| (¢).
o=
TABLE 6. RESULTS BASED ON THE CHARACTERISTIC EQUATION (10-11)
7 £ z a ¢ R JT
0-00 0-0000 3-058 1-010 0-2607 5697-3 0-0
0-01 0-0086 3-057 1-010 0-2608 5689-8 1957
0-05 0-0429 3-054 1-012 0-2630 5512-6 946-6
0-10 0-0855 3-040 1-017 0-2696 5004-9 1710-9
0-15 0-1272 3-020 1-027 0-2805 4290-3 21835
0-20 0-1679 2-990 1-038 0-2954 3503-9 23563-0
0-25 0-2071 2:952 1-051 0-3136 2754-3 2281-4
0-30 0-2446 2-907 1-066 0-3351 2104-7 2059-5
0-35 0-2802 2-853 1-080 0-3589 1577-4 1767-4
0-40 0-3137 2-795 1-095 0-3851 1167-7 1464-9
ol 0-45 0-3448 2-729 1-109 0-4129 858-3 1184-0
L <@ 0-50 0-3736 2-655 1-119 0-4418 628-8 939-6
— N 0-55 0-3997 2-577 1-127 0-4719 460-2 735-6
< 0-60 0-4230 2496 1-135 0-5029 336-9 569-9
po > 0-65 0-4433 2-417 1-144 0-56350 247-0 438-0
® = 0-70 0-4602 2-339 1-155 0-5678 181-6 334-2
& 435} 0-75 0-4734 2-270 1-173 0-6016 134-1 253-9
— 0-80 0-4827 2-209 1-200 0-6360 99:69 192-4
= O 0-85 0-4877 2-159 1-241 0-6708 7472 145-8
T O 0-90 0-4885 2-116 1-294 0-7054 56-49 110-4
= w 0-95 0-4842 2-090 1-373 0-7402 43-04 83-36
1-00 0-4743 2-068 1-468 0-7750 32-90 62-41
1-05 0-4535 2-079 1-654 0-8135 24-69 4479
1-065 0-4388 2-109 1-801 0-8302 21-88 38-40

It is perhaps worth while to note briefly how the first viscous correction to ¢, can also
be introduced. For this purpose it is convenient to define an unstretched Langer variable

-BLL (o]
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STABILITY OF SPIRAL FLOW 83

so that { = p/e. If we think of ® as having been expressed in terms of 7 then it is clear that
the corrected inviscid solution must be of the form

V= O—zl2+e22Q4(C, p)- (10-15)

To evaluate L,'¥" we must consider further the meaning of L, operating on 7#2. As in §9 this
can involve only the highest derivative in the inviscid part of L, when expressed in terms
of 9, i.e. 42

Lt > = Uenn qan® = Uchy(1—pa) 1777 (10-16)

Thus we have (cf. equation (9-5))
LYW = —p2(U—c) "t O= U py(1—po) " *nt= " 6727 UL (1 —po) 1" Q3(C, ). (10°17)

We have not, however, made any calculations based on this corrected form of the inviscid
solution since they would not be expected to differ appreciably from those based on equation
(10-11).

11. DiscussioN

One of the principal results of the present paper is the stability boundary in the (R, /T)-
plane which is shown in figure 7 together with the theoretical results of Krueger & DiPrima
(1964) and Datta (1965). Our results based on the uncorrected characteristic equation
(7-9) have been omitted from this figure since they lie between the two curves shown.
Although one would have expected the parameter £ to be a monotonic function of R, it was
found (see tables 1, 5 and 6) that # actually reached a maximum, the value of which varied
somewhat from one form of the characteristic equation to another as indicated in figures 7,
8, and 9. Thereafter § decreased slightly until a point was reached where the structure of the
neutral curves changed quite dramatically. Since the values of R at which £ reaches its
maxima are of the order of 100, it is likely that our asymptotic approximations are beginning
to become unreliable beyond these points.

The perturbation theories of Chandrasekhar (1g62) and Datta (1965) were derived
on the assumption that Ris small. Nevertheless, the agreement between Datta’s formula and
the present results extends to far larger values of R (of the order of 500) than one would
have expected and this suggests that his result may be asymptotic in character. This agree-
ment is even more surprising when it is recalled that in the perturbation theories the wave-
number ¢ is assumed to remain constant with the value 1-56.

For values of R up to about 15, Krueger & DiPrima (1964) have made a detailed com-
parison between their theoretical results and the experimental results of Snyder (1962)
and Schwarz, Springett & Donnelly (1964) and found good agreement on the whole. For
larger values of R, the only existing experimental results would appear to be those obtained
by Kaye & Elgar (1957) and Williamson (1964). These two sets of data are in reasonable
agreement for values of R up to about 300 but for larger values of R they are in substantial
disagreement. The agreement with the theoretical results extends only to about R = 75
and at this point there is the suggestion of a ‘break’ (i.e. a discontinuity in the slope) of the
experimental stability boundary. Williamson’s data also show a large inc¢rease in the values
of a (from 1-56 to about 3-75) as R increases from 0 to about 350 and this trend is certainly
at variance with the theoretical results shown in figure 9.
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Ficure 7. The stability boundary in the (R, ,/ T")-plane. Curves 1 and 2 are based on the character-
istic equations (9-7) and (10-11) respectively. — — — —, Datta’s result 7 = (1708 + 2:35R?)%;
0, from Krueger & DiPrima (1964); ®, where £ reaches a maximum.

08+
o
0-6-
C._
041
02
| L bl | Lot Lot ] ! | |
10 2 3 5 10? 2 3 5 103 ' l5”“10‘1
R

Ficure 8. The variation of ¢ with R. Curve 1 is based on the characteristic equations (7-9) and (9-7);
curve 2 is based on equation (10-11). O, From Krueger & DiPrima (1964); ®, where f reaches
a maximum.
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STABILITY OF SPIRAL FLOW 85

In spite of the obvious limitations of the present theory, however, the asymptotic tech-
niques which have been developed would appear to be applicable to a wide class of problems
including, for example, the stability of thermally stratified plane Poiseuille flow (Gage &
Reid 1968). The present results could also be used as starting values for a direct numerical
attack on the problem as suggested recently by Reynolds & Potter (1967).

—
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Ficure 9. The variation of o with R. Curves 1, 2, and 3 are based on the characteristic equations
(7-9), (9-7), and (10-11) respectively. O, From Krueger & DiPrima (1964); ®, where £ reaches
a maximum.

Because of the limited agreement between the theoretical and experimental results it
seems clear that other possible modes of instability must also be investigated. These would
include extending the linear theory to allow for non-axisymmetric disturbances or, as Snyder
has suggested to us, the development of a non-linear theory for subcritical instabilities.
Either of these generalizations would involve severe theoretical difficulties and it may be
hoped, therefore, that further experimental work will provide some guidance in choosing
between these alternatives.

The research reported in this paper has been supported by the United States Atomic
Energy Commission (T. H.H.) and in part by the National Science Foundation (W. H.R.)
under Grant No. GK-944.

AprPENDIX. THE SOLUTIONS OF THE EQUATION (AD--p) x = 0

We have seen in §5 that the solutions of the comparison equation (5-3) can all be ob-
tained from the solutions of the simpler third-order equation

(AD+p)y =0 (A1)
by assigning appropriate values to p. In this appendix, therefore, we wish to define certain
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86 T.H. HUGHES AND W. H. REID

standard solutions of this equation that are particularly well suited for the present purposes
and to discuss some of their properties.
Solutions of equation (A1) can easily be obtained by the method of Laplace integrals

in the form )
j 11 &1 g, (A2)
C

where the path of integration C must be chosen so that

[t e(gt—%m]c = Q. (A3)
The integrand in the representation (A2) will, in general, be multiple-valued and it is
convenient, therefore, to introduce a cut into the ¢-plane running from the origin to infinity
along the positive real axis. For all values of p we can then choose three paths (C}, C,, and
C,) that run from infinity to infinity as shown in figure 10. The solutions associated with
these paths have the property that they are subdominant in the sectors S, S,, and §; of
figure 11 respectively. When p = —1 they are closely related to the Airy functions defined
by Olver (1954) and when p = 1 they are closely related to the usual approximations to the
viscous solutions of the Orr—Sommerfeld equation.

Ne

G
G a = : G
G

I
/

Ficure 10. The paths of integration in the f-plane for p > 0 (left)
and p < 0 (right).

N\

I] —
1
2

Fieure 11. The anti-Stokes lines (left) and the Stokes lines (right)
in the &-plane.

If p = 0itis also convenient to consider the solution associated with the path C shown in
figure 10. This solution has the property that in the sector 77 of figure 11 its asymptotic
expansion is purely neutral, i.e. contains no subdominant terms. From this solution we can
derive two others that are purely neutral in 7}, and 75 respectively. The solution thatis purely
neutral in 75 provides the viscous correction to the leading term of ¢, and thus determines the
domain of validity of ¢,. If p < 0 we can also choose four paths (I, I,, I;, and 1) that run
from the origin to infinity as shown in figure 10. The solutions associated with these paths
have asymptotic expansions that are purely neutral in the sectors 7}, T',, T, and 7] respec-
tively. The solution associated with the path /5 provides the viscous correction to the leading
term of ¢, and thus determines the domain of validity of ¢,.
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STABILITY OF SPIRAL FLOW 87

The solutions A, (&, p)

Consider then the solution associated with the path C,. In defining this solution we shall
require, first, thatit reduce to the usual Airy function Ai (§) when p = —1 and, secondly, that
it be real (for all values of p) when £ is real. Thus we define a standard solution 4, (¢, p) by
therelation

1 . 1
— = _alptbhmi —p—1 alEt—3583) {4,
AED) =5 f ey (Ad)
The solutions associated with the paths C, and C; can then be expressed in terms of 4, (€, p)
by the relati , .
y the relations A€, p) = e—%pmAl(ge%m,],) 1 (A5)
and Ay(&,p) = Hmi Ay (e, p)
The derivatives of these solutions satisfy the relation
AP (& p) = (—1)" 4y(&, p—n) (A6)
and from equation (A1) we then have the recursion formula
A&, p—3) =4, (&, p—1) —pA(E, p) = O. (A7)

Accordingly it is sufficient to consider the solutions for values of p in the range —1 < p < 2
(say); this includes, however, the relevant ranges of p; and p, for the stability problem.

For integral values of p, 4,(£,p) can be expressed in terms of the Airy function Ai(£)
together with its first derivative and first integral. Thus, for example, we have

Al(ga - 1) = Al(g))
4,60 —— [ Al

4 =£[ Al a-ar@,

and 462 = —5le [ Aipu—earo-ai@),

where the lower limit of integration oo, denotes a path of integration that tends to infinity
in the sector S| of figure 11. For the numerical calculation of 4, (£, p) and other related func-
tions it is useful to note the initial value

400 = Sip T (A8)

The leading term in the asymptotic expansion of 4,(¢,p) can easily be obtained by the
usual saddle point method and is given by

A\(E9) ~ rlger 9 exp (6. (A9)

This result is valid in the sense of Poincaré in the sector |arg £| < 7 but, by analogy with the
Airy functions, we may expect it to be valid in the stricter sense of Olver only in the smaller
sector |arg §| < 4. In this more restricted sense we see that 4; (£, p) is subdominant in the
sector |arg | < 4w and purely dominant in the sectors 47 < |arg{| < §m. The descending
series associated with (A 9) could be obtained without difficulty by the method of steepest
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88 T. H. HUGHES AND W. H. REID

descents but it is not needed for the present purposes. From equations (A5) and (A9) it
then follows that A4,(&, p) is subdominant in S, (k = 1,2, 3).

The complete asymptotic expansions of A4,(&,p) in 7, are more complicated since, in
general, they contain not only dominant and subdominant terms but also a neutral term.
This is, of course, simply a consequence of the fact that we are dealing with a third-order
differential equation. The required expansions can be obtained most easily by the use of
exact connexion formulas and for this purpose we must now make a distinction between
positive and negative values of p.

The solutions B, (&, p)

For p = 0 we consider first the solution associated with the path C, which, for later
convenience, is defined by the relation

B (&,p) = L Lp+1) f t-r-1e=it gy, (A10)
2m Co
It is also convenient to define two additional solutions of this type by the relations (cf.
ti A5 2, 2. .
equations ( )) Bz(g,p> —e 317771B1(§esn1,p) ]\ (All)
and By(&,p) = "B, (Ee 7, p).
The derivatives of these solutions satisfy the relation
L'(p+1)
() _ o\ . —
Bk (g)[)) - F([)—l—l—n)Bl (g:p n) (AlQ)

provided p—n is not equal to a negative integer, and from equation (A1) we then have the
recursion formula

(6—=1) (p—2) By (§,p—3) —EB(§,p—1) +Bi(E, ) = 0, (A13)
in which we must require p > 3. Thus it is sufficient to consider these solutions for values of
p in the range 0 < p < 3.

For integral values of p, the integrand in equation (A 10) is single-valued with a pole of
order p+1 at ¢ = 0 and the residue theorem then gives

B(E0) =1, B(E1)=E B(E2) =8, ... (A14)

We may also note the initial value

1 1 .
B (0,p) = — =813 [N (p+1) I'(2—1p) e 27isin pmr, Al5
((0,) = = ;52 3 T(p1) D2 —dp) e #71sing (A15)
which is valid for 0 < p < 3; for p > 3 the values of B,(0,p) can be obtained by using this
result together with the recursion formula (A13).

The asymptotic expansion of B, (£, p) can easily be obtained by the method of integration
by parts and the use of Hankel’s contour integral representation of the gamma function,

with the result B, (£, p) = EP{1—2p(p—1) (p—2) -3+ O(J€]®)}. (A16)

This result is valid in the sense of Poincaré in the sector —357 < argé < —%w but it is
complete in the sense of Olver only in the smaller sector —§7 < arg§ < —37. From
equations (A11) and (A16) it then follows that B,(£, ) is purely neutral in 7;(k = 1,2, 3).
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STABILITY OF SPIRAL FLOW 89

Furthermore, for integral values of p the series (A16) terminates and we then recover
the exact solutions (A 14).

It is also of some interest to note the relation between (A16) and the result obtained by
Koppel (1964), who used the saddle-point method to obtain the leading term in the asymp-
totic expansion of an integral equivalent to (A 10). In the present notation, his result can be

written in the form B,(£,p) ~ (2m)~tet 1 (p+1)-2-ET(p+1) &2, (A17)

which does not reduce to the exact solutions (A 14) for integral values of p. For large values
of p, however, Stirling’s formula shows that the coefficient of p in this expression does tend
to unity.

The six solutions 4, and B, are not, of course, linearly independent but must be related
by three exact connexion formulae. From figure 10 it immediately follows that

epni B
I'(p+1)""
On replacing £ in this equation by £e*#7i and using equations (A 5) and (A 11) we obtain
the two additional connexion formulae

A+ A+ A, = (A18)

Ay Ayte2mid, — 1““{131)?13 B, and A 4e2mid,+A, — T—(%f-m
By using the expansions (A9) and (A16), the definitions (A5) and (A1l), and the three
connexion formulae, we can now obtain the complete asymptotic expansions of all of the
solutions throughout the entire £-plane for p = 0. Consider, for example, the solution By
(€, p) which provides the required viscous correction to the leading term of ¢,. Its complete
asymptotic expansion is easily found to be

By(E,p) = E{1—5p(p—1) (p—2) E3+O(|€] %)}
+2isinpm I'(p+1) 4, ()  (E<TY),
+{ —2isinpr L'(p+1) 4,(&,p) (EeTy),; (A20)
0 (EeTy),

B, (A19)

where —§7 < argé < Z7.
The solutions Q. (&, p)

For p < 0 we must now consider the solutions associated with the paths 7, and 7, shown in
figure 10. For this purpose we first define the solution

Q,(&p) = _Qﬂj t—b-1eEt-3% qs. (A21)
n D(=p) J 1,
The solutions associated with the other paths can then be defined by the relations

Q£ p) = e Qy (£, p),
Q3(§:p) = e~%p7ri Ql(ge%ﬂiub): <A22)

and Q6 p) = 7271 Q (£, p).

The derivatives of these solutions satisfy the relation

AL = (=1 =) Qs (A23)
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and from equation (A1) we then have the recursion formula

(p—1) (p—2) Qu(&,p—3) —EQ(E,p— 1)+ Qi(E,0) = O (A24)

which is of exactly the same form as equation (A13).

For integral values of p no particular simplification is possible but it may be noted that
Q5(&,—1) = Q4(§), where Q,(£) is the viscous function defined and tabulated (forarg§ = —§m)
by Reid (1965) in connexion with the asymptotic theory of the adjoint Orr-Sommerfeld
equation. We also note the initial value

_e F(l —%p)
0 —=. A25
The method of integration by parts can again be used to obtain the asymptotic expansion
Qu(&,p) = {1 —5p(p—1) (p—2) £+ O([€]%)}; (A26)

which, though identical in form with equation (A16), is valid (in the complete sense) in
the sector 27 < argé < 47. From equations (A 22) it then follows that Q,, Q;, and @, are
purely neutral in the sectors 75, T3, and 7] respectively.

Thus, for p < 0 we have seven solutions which must be related by four connexion
formulae. These follow, by inspection, from figure 10 in the form

2mi(dy+ Ay +45) +I'(—p) (@ — @) =0,
2md, +T(—p) (Q—@y) = 0,
2mid, +1'(—$) (Qs— Q1) = 0,

and 2midy+ (=) (Q1— Q) =
By using the expansions (A9) and (A26), the definitions (A 5) and (A22), and these four
connexion formulae, we can obtain the complete asymptotic expansions of all of the solu-
tions throughout the entire £-plane for p < 0. Consider, for example, the solution Q(&,p)

which provides the required viscous corrections to the leading term of ¢,. Its complete
asymptotic expansion is found to be

(A27)

2m1
TT=p) 4, (Ep) (EeTh),
Q;(&,p) = EM{L —3p(1—p) (2—p) E3+ O(|€]°)}+ +'F(2m ) (&) (EeTy, (A28)
0 (£eTy),

where —%7 < argf < 3m.

The solutions for half integral values of p

For half integral values of p it is not difficult to show that all of the solutions of equation
(A1) can be expressed in terms of products of Airy functions and their derivatives with
argument 275 = x (say). Thus, for example, we find

4, — ) = 2t AL %(),
(& +3) = 2t {AL(x) —x Ai* (x)},
Q36 —3) = 2w et Al (x) A (xem) (A29)
By(€, + %) = 28metmi{xAi (x) Ai (xef7)
—edm AT’ (%) Ai’ (vef7i))

and
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